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Abstract10

Habitat fragmentation divides populations into smaller subpopulations. At the11

same time, the Allee effect reduces the growth and thereby the viability of12

small populations. Hence, habitat fragmentation and the Allee effect can syn-13

ergistically amplify negative impacts on spatially distributed populations. To14

support endangered populations, management and conservation strategies aim to15

improve connectivity between subpopulations by creating corridors and stepping16

stones, for instance. This study investigates how enhanced connectivity (strength17

of connections between subpopulations in terms of dispersal rate) influences a18

fragmented population subject to the Allee effect. Using a generic two-patch19

discrete–time model with a positively density-dependent growth function, we20

study the impact of connectivity on the asymptotic total population size through21

simulations. Due to the Allee effect, low connectivity can lead to a decline in the22

asymptotic total population size, which we call the Allee pit. However, increased23

connectivity facilitates the rescue effect, wherein a persistent subpopulation in24

one patch can save an extinction-prone subpopulation in another patch. We25

find that for connectivity to benefit the asymptotic total population size, dis-26

persal must be sufficiently large to push the smaller subpopulation above its27

Allee threshold. If dispersal is below this critical dispersal rate, there remains a28

detrimental effect on the asymptotic total populations size. Therefore, this study29

implies that conservation strategies should not only aim to increase connectiv-30

ity in fragmented populations subject to Allee effects but also ensure that the31

critical dispersal rate is surpassed.32
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1 Introduction35

Fragmentation of land and sea due to human activities stands as a paramount chal-36

lenge in biodiversity conservation efforts, as highlighted by the Intergovernmental37

Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019). In38

contrast to the negative density-dependence arising from competition, positive density-39

dependence — the well known Allee effect — puts small populations under pressure40

and makes them more extinction prone (Courchamp et al, 2008). As habitat fragmen-41

tation splits up populations in smaller subpopulations, the Allee effect can reinforce42

negative consequences of fragmentation.43

Mechanisms like mate-finding difficulties or predation can cause an Allee effect44

(Dennis, 1989; Schreiber, 2003; Gascoigne et al, 2009; Kramer et al, 2009). For45

instance, the mate-finding Allee effect describes a decrease of mating opportunities46

with decreasing population densities. Especially for individuals of a small population47

this mating difficulty and lacking cooperation opportunities are a disadvantage that48

can make a population not viable. The Allee effect is therefore of high relevance for49

extinction research (Courchamp et al, 1999). If a subpopulation with an Allee effect50

is connected to other patches by dispersal, immigrants from another patch might sup-51

port the local population on the one hand. On the other hand, the immigrants may52

be exposed to an increased risk of extinction due to the Allee effect. This could lead53

to a total net loss of individuals in the metapopulation and even increase its vulner-54

ability. Consequently, the Allee effect can make it more likely to reinforce negative55

consequences of fragmentation. Increasing dispersal in such a situation can intensify56

this negative effect on the total population.57

This is a fundamental issue because many conservation efforts aim at increas-58

ing connectivity to enhance reproductive success and potentially reducing the risk of59

extinction (Tewksbury et al, 2002; Fahrig, 2002), and promoting dispersal, e.g., via60

corridors over highways, stepping stones, or flowering edges of cultivated land (Turner61

et al, 2001; Soanes et al, 2024). While such measures are often perceived as ‘benefi-62

cial’, it is long recognized that they can come with disadvantages caused by several63

factors (Simberloff and Cox, 1987; Haddad et al, 2014). For example, diseases, natural64

enemies, invasive species and fire can spread more easily between patches when they65

are more tightly coupled. Predators can adapt behaviorally and wait around corridors66

for their prey, and connectivity can synchronize population dynamics and increase the67

chance of extinction (Matter, 2001).68

These insights naturally raise the question to which degree the interplay between69

enhanced connectivity and positive density dependence benefits or endangers a pop-70

ulation in a fragmented habitat. Here, we aim to investigate the influence of the71

relationship between increased dispersal and the Allee effect on the asymptotic total72

population size.73
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This seems to have not been done so far, which is somewhat surprising as the Allee74

effect has been extensively studied in patchy environments. In a discrete-time model75

Vortkamp et al (2020) analyzed the effect of increased connectivity and a strong Allee76

effect on population persistence and stability in a two-patch model with the Ricker77

growth function, and in a continuous-time model Gyllenberg et al (1999) studied the78

joint effect of symmetric dispersal and the Allee effect on the heterogeneity of popu-79

lation densities. Amarasekare (1998) studied dispersal and a strong Allee effect in two80

patches and found that if one subpopulation size falls below the Allee threshold the81

patch can be rescued by immigrants from the other patch that is above the threshold82

(referred to as the rescue effect ; also explored in e.g., Brown and Kodric-Brown, 1977;83

Gotelli, 1991; Kang, 2013; Van Schmidt and Beissinger, 2020). Wang (2016) investi-84

gated the joint effect of dispersal and a strong Allee effect as well and stated that85

there is an optimal dispersal rate at which migration to the ‘better’ patch is beneficial86

for each individual, and above which migration is harmful to the whole species. More-87

over, the Allee effect was studied in two-patch models with respect to stability (Pal88

and Samanta, 2018; Saha and Samanta, 2019; Chen et al, 2022), invasion and per-89

sistence (Maciel and Lutscher, 2015), synchrony (Kang and Armbruster, 2011), and90

within more general patchy environments (Ferdy and Molofsky, 2002; Sato, 2009; Sun,91

2016; Cronin et al, 2020), for example.92

We tackle our research aim through simulations and numerical exploration. Here,93

we consider a discrete-time two-patch model that represents two subpopulations and94

we assume Beverton–Holt growth with an Allee effect. Focusing on spatial hetero-95

geneity, we assume different intrinsic growth rates and carrying capacities for the two96

subpopulations.97

Fahrig (2017) found in a literature review that fragmentation per se, i.e., the divi-98

sion of habitat into smaller patches without reducing the total habitat amount, has99

been reported to have more positive than negative effects (in the sense of affect-100

ing population occurrence, abundance, species richness, or other ecological response101

variables). This initiated a debate about the ecological consequences of habitat frag-102

mentation (Fletcher Jr et al, 2018; Fahrig et al, 2019; Miller-Rushing et al, 2019). More103

recently, it has been shown that spatial heterogeneity can have detrimental effects as104

well when certain relationships between intrinsic growth and the carrying capacity105

(i.e., r–K relationships) are fulfilled (DeAngelis and Zhang, 2014; Arditi et al, 2015;106

Zhang et al, 2017; DeAngelis et al, 2020; Vortkamp et al, 2022; Grumbach et al, 2023).107

We build upon the classification of the effect of dispersal on the asymptotic total108

population size into four qualitatively different so-called response scenarios (Grum-109

bach et al, 2023), see Fig. 1. When two connected patches achieve an asymptotic total110

population size greater (lesser) than the combined carrying capacities of the individual111

patches for all dispersal rate values, this outcome is termed a beneficial (detrimental,112

respectively) effect of dispersal (and therefore of connectivity). The sum of the two car-113

rying capacities is the asymptotic total population size in the absence of dispersal and114

therefore serves as the reference value for isolation in comparison with connectivity.115

In this paper we will show that the inclusion of the Allee effect can introduce a116

critical dispersal rate below which dispersal has a detrimental effect while larger dis-117

persal rates can have a beneficial effect on the asymptotic total population size due118
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to the rescue effect. The detrimental dip for small dispersal rates is later introduced119

as the Allee pit. We therefore detect and classify so far unknown response scenar-120

ios including the Allee pit, which we propose to call pit response scenarios. We also121

provide a mechanistic explanation of the new pit response scenarios and a biological122

interpretation of the emerging rescue effect across various parameter ranges.123

2 Setting the stage124

2.1 Model description125

The simplest setting for a fragmented population can be modeled by a two-patch126

system. There are two subpopulations A and B, and their population sizes are denoted127

as NA,t and NB,t at time step t ∈ N respectively. The asymptotic total population size128

is the sum of the two asymptotic subpopulation sizes denoted by Ntot = N∗
A + N∗

B.129

The two subpopulations are connected by dispersal with dispersal rate δ, which for130

simplicity is assumed to be symmetric in both patches, i.e., δA = δB = δ. We assume131

the dispersal rate to be δ ≤ 0.5, i.e., the largest dispersal value leads to perfect mixing132

of the two subpopulations.133

We consider the two-dimensional discrete-time model where reproduction fθ
i (Ni,t)134

in the individual patches i = A,B depends on the Allee effect strength θ ∈ R+ and is135

taking place before dispersal:136

NA,t+1 = (1− δ)fθ
A(NA,t) + δfθ

B(NB,t),

NB,t+1 = (1− δ)fθ
B(NB,t) + δfθ

A(NA,t).
(1)

The growth functions read137

fθ
i (Ni,t) =

riNi,t

1 + ξiNi,t
· Ni,t

Ni,t + θ
, i = A,B, (2)

which consist of two parts. The first factor describes Beverton–Holt growth and the138

second factor describes the mate-finding Allee effect (Courchamp et al, 2008; Boukal139

and Berec, 2009) with Allee strength θ, which describes the difficulty of finding mating140

partners. The parameters ri ∈ R+ are the intrinsic growth rates and ξi ∈ R+ are the141

intraspecific competition strengths. From now on, when we use i in the subscript of142

subpopulation sizes and parameters, we always mean i = A,B.143

In the absence of the Allee effect (θ = 0), the growth dynamics coincide with144

the Beverton–Holt dynamics. In terms of the intraspecific competition strengths, the145

carrying capacitiy of the Beverton–Holt function (i.e., the positive fixed point of f0
i )146

can be expressed by K
BH

i = ri−1
ξi

. We proceed under the assumption that K
BH

A ≤ K
BH

B ,147

allowing us to refer to patch A as ‘the smaller patch’ and patch B as ‘the larger patch’148

(K
BH

A ≥ K
BH

B would symmetrically yield identical outcomes). If ri > 1, both patches149

approach their carrying capacity when being isolated. Contrarily, if ri < 1 each of the150

subpopulations goes extinct in isolation. Therefore, in the absence of the Allee effect,151

ri = 1 is the threshold between long-term persistence and extinction. In presence of the152
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Allee effect this threshold increases, i.e., with increasing Allee strength the population153

growth rate needs to increase such that the population persists.154

The Allee strength θ is assumed to be symmetric in both patches (suppose that155

both subpopulations are biologically similar and therefore suffer the same mate-finding156

difficulties in case of low density). It influences the Beverton–Holt growth dynamics157

to have a positive density-dependence. For θ > 0, a strong demographic Allee effect158

is induced, i.e., there is an Allee threshold below which the per-capita growth rate is159

smaller than one and the population goes extinct.160

2.2 Isolated patches with Allee effect161

For a single population (i.e., both subpopulations in isolation) with growth dynamics162

(2) and an Allee effect strength θ > 0, there are up to three equilibria. The two stable163

equilibria are zero and the carrying capacity KA or KB. They are separated by an164

unstable equilibrium which is the Allee threshold TA or TB (cf. Kang (2015) for a more165

general model). Population sizes below the Allee threshold decrease to extinction,166

while population sizes above the Allee threshold grow to the carrying capacity. The167

two nontrivial equilibria read168

Ki =
α+

√
α2 − β

2(ri − 1)
,

Ti =
α−

√
α2 − β

2(ri − 1)
,

(3)

with169

α = (ri − 1)(K
BH

i − θ),

β = 4K
BH

i θ(ri − 1).

The carrying capacity and the Allee threshold exist if and only if the radicand of170

the square root is non-negative and the denominator is non-zero, i.e., if ri ̸= 1. The171

radicands of Ki and Ti coincide and therefore vanish for the same value of θ, which is172

θc,i = K
BH

i

√
ri − 1

√
ri + 1

. (4)

If θ is greater than this critical value θc,i, the radicand is negative and therefore the173

nontrivial equilibria do not exist. In this case, the population goes extinct for all initial174

conditions.175

In the absence of the Allee effect (i.e., for θ = 0), the equilibrium subpopula-176

tion sizes Ki coincide with the respective carrying capacity parameters K
BH

i in the177

Beverton–Holt dynamics, provided ri > 1. For increased Allee strength the asymp-178

totic subpopulation sizes Ki decrease (note that the carrying capacity is approached179

only for initial conditions within this equilibrium’s basin of attraction).180
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Fig. 1 The asymptotic total population size Ntot of two coupled patches without Allee effect (θ = 0)
in terms of the dispersal rate δ for four different response scenarios. A: (MB) monotonically beneficial,
B: (UB) unimodally beneficial, C: (BTD) beneficial turning detrimental and D: (MD) monotonically

detrimental. The dashed horizontal line corresponds to the sum of the two carrying capacities, K
BH

A +

K
BH

B , which is the asymptotic total population in the absence of dispersal. It serves as the reference
value.

2.3 Connected patches without Allee effect181

Before investigating the dynamics of the coupled model (1)-(2), we briefly outline the182

impact of dispersal on the asymptotic total population size in the case θ = 0, which183

has been analyzed by Grumbach et al (2023). They give explicit parameter conditions184

and a biological interpretation for four qualitatively different response scenarios (see185

Fig. 1). In case of no dispersal the total population size Ntot approaches the sum186

of the two carrying capacities K
BH

A + K
BH

B , which is shown in a dashed horizontal187

reference line in Fig. 1. The sum of the two carrying capacities serves as the reference188

value to designate beneficial and detrimental effects of increasing dispersal rates on the189

asymptotic total population. The four response scenarios can be briefly characterized190

as follows:191

(MB) In the monotonically beneficial response scenario the asymptotic total popu-192

lation size increases monotonically with increasing dispersal (see Fig. 1A).193

(UB) The scenario where increasing dispersal is consistently beneficial for the194

asymptotic total population size, albeit with decreasing benefit for high dis-195

persal rates, is termed the ”unimodally beneficial” response scenario (see196

Fig. 1B).197

(BTD) We speak of the beneficial turning detrimental response scenario if increasing198

dispersal has a beneficial effect on the asymptotic total population size for199

small dispersal, but a detrimental effect for larger dispersal (see Fig. 1C).200

(MD) If the asymptotic total population size monotonically decreases with increas-201

ing dispersal the response scenario is called monotonically detrimental (see202

Fig. 1D).203

Mechanistically the scenarios differ mainly due to the patches’ spatial heterogene-204

ity (depending on ri and K
BH

i ). In case of overcrowding in one of the patches (i.e.,205

large growth rate and large competition) it is beneficial for the asymptotic total pop-206

ulation size if many individuals disperse to the other patch in which they are subject207

to more relaxed conditions with less competition. In that case the less crowded patch208
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can absorb individuals like a sponge. By contrast, in case of a net flow from relaxed209

conditions into a patch which is already overcrowded, the pressure on the entire popu-210

lation is even strengthened, which leads to a detrimental effect on the asymptotic total211

population size. The analytic parameter ranges for these four response scenarios were212

published in Grumbach et al (2023). Their results build on Franco and Ruiz-Herrera213

(2015), Arditi et al (2015) and Gao and Lou (2022).214

2.4 Connected patches with Allee effect215

We now look at the dynamics of two connected patches with the Allee effect (θ > 0)216

as introduced in Eq. (1). In Section 2.1, we already pointed out that in isolation each217

subpopulation can have up to three equilibria, two of which are stable: the carrying218

capacity and population extinction. When connecting the two subpopulations, there219

are up to nine equilibria with quadristability.220

Figure 2 shows the nullclines of the two subpopulations in the phase plane (cf.221

Amarasekare, 1998). In Figure 2A we see that for δ = 0 the coupled system has222

nine equilibria, which are all combinations of {0, TA, KA} and {0, TB, KB}. The223

equilibrium subpopulation sizes are independent of the other subpopulation’s size (as224

they are not connected). The four stable equilibria of the coupled system are (KA,KB),225

(KA, 0), (0,KB), and (0, 0). There is only one stable equilibrium of the coupled system226

at which both subpopulations persist. In the following, we will refer to the coexistence227

equilibrium (KA,KB) as ECoex.228

For increased δ we see in Fig. 2B that there is still quadristability. The increased229

dispersal rate induces that there are three stable equilibria at which both subpopula-230

tions survive. At the two additional coexistence equilibria (referred to as ElowA and231

ElowB for N∗
A and N∗

B close to zero, respectively), connectivity enables the larger sub-232

population to rescue the smaller subpopulation, which would go extinct in the absence233

of dispersal. Even though the two additional coexistence equilibria ElowA and ElowB are234

stable, they have a high sensitivity to external variations as one of the subpopulation235

sizes is close to zero.236

Figure 2C and 2E show the nullclines for slight variations of the parameters rA and237

K
BH

A . These parameter variations change the system to have seven equilibria (three of238

which are stable) in Fig. 2C and five equilibria (two of which are stable) in Fig. 2E.239

We see that the coupled system (for δ > 0) is highly sensitive to parameter changes.240

An increased dispersal rate can change the system’s dynamics and stable states in241

different ways. In Fig. 2D and 2F we see the same parameter settings as in Fig. 2C242

and 2E, respectively, but with an increased dispersal rate. In Fig. 2D the total number243

of equilibria differs compared to Fig. 2C while the characteristics of the stable states244

are unchanged. In Fig. 2F the coexistence equilibrium ElowA disappears while ECoex245

appears in comparison to Fig. 2E. The total number of equilibria is unchanged.246

In our following results we choose an initial condition NA,0 = NB,0 = 1, that always247

makes the system approach the stable equilibrium ECoex = (KA,KB) if it exists. As248

Fig. 2E illustrates, there are settings in which the equilibrium ECoex does not exist. In249

these situations our chosen initial condition approaches either one of the coexistence250

equilibria ElowA and ElowB or (0, 0), depending on the parameter setting.251
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increasing 𝜹𝜹

Fig. 2 The equilibria and their stability in the phase plane. The purple lines correspond to the
nullclines of subpopulation A and the blue lines correspond to the nullclines of subpopulation B. The
intersections of the two lines are the equilibrium states of the coupled system. The red points mark
the stable equilibria. In panel A the patches are isolated, in panels B–E the patches are connected.

Parameters: rB = 2.9, K
BH

B = 1.9 and θ = 0.38. Additionally, we chose in A and D: rA = 2.9,

K
BH

A = 1.9 with δ = 0 in A and δ = 0.04 in D; B and E: rA = 2.69, K
BH

A = 1.69 with δ = 0.04 in B

and δ = 0.052 in E; C and F: rA = 2.49, K
BH

A = 1.49 with δ = 0.04 in C and δ = 0.07 in F.
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3 Results252

3.1 Rescue effects and Allee pits253

We now focus on the question to which degree the interplay between enhanced con-254

nectivity and the Allee effect benefits or diminishes the total population. Figure 3255

shows the asymptotic subpopulation sizes as functions of the Allee strength and the256

asymptotic total population size as a function of the dispersal rate. First, we consider257

the effect of increasing Allee effect strength θ.258

Figure 3A shows the two asymptotic subpopulation sizes in isolation. As explained259

in Sect. 2.4, for the chosen initial condition (1, 1) the system approaches the stable260

equilibrium ECoex = (KA,KB) for all Allee strengths smaller than each of the critical261

values θc,i, depicted in Fig. 3A. The critical Allee strength θc,i is the bifurcation point262

of the underlying saddle-node bifurcation for each subpopulation. As the Allee strength263

increases, so does the Allee threshold, causing more initial conditions to approach264

zero. For Allee strengths in between both critical Allee strength, i.e., θc,A < θ <265

θc,B, subpopulation A is extinct for all initial conditions, while subpopulation B still266

approaches its carrying capacity (as the initial condition’s value for subpopulation B is267

sufficiently large in patch B). Beyond the critical Allee strength θc,B, global extinction268

occurs for all initial conditions.269

Increased connectivity facilitates rescue mechanisms which can enable the smaller270

patch to persist even for Allee strengths beyond θ0,A where it would go extinct in271

isolation. Figure 3B–3D show the rescue effect in different intensities depending on272

the degree of connectivity, i.e., the dispersal value δ.273

� In Fig. 3B we see that already very little connectivity (δ = 0.015) enables the larger274

patch B to help patch A to persist beyond the critical Allee strengths θc,A, i.e., the275

left red vertical line. The rescue effect is not strong enough to prevent patch A from276

dying out for all Allee strengths but it delays the extinction (in terms of greater277

Allee strength).278

� A little increase in connectivity, as shown in Fig. 3C (δ = 0.075), can prevent patch A279

from dying out before patch B dies out. Moreover, in this setting the subpopulation280

in patch A shrinks close to zero with increasing Allee strength and is therefore281

already at high risk of stochastic extinction for intermediate Allee strengths. Here,282

we remind the choice of the initial condition such that the equilibrium ECoex is283

approached (explained in Sect. 2.4). Even for this choice, the Allee effect can put the284

subpopulations and therefore the total population under incresed risk of extinction.285

� For further increased connectivity, as shown in Fig. 3D (δ = 0.17), the rescue effect286

prevents patch A from going extinct before patch B without high risk of stochastic287

extinction. The subpopulation sizes N∗
A and N∗

B come closer to each other while the288

Allee strength beyond which both subpopulations go extinct declines.289

For Allee strengths just above θc,A the total population takes big benefit from290

increasing connectivity and the resulting rescue effect. But the rescue effect also has291

its drawback. The larger the impact of the rescue effect on the smaller subpopulation,292

the lower the Allee strengths above which complete extinction of the total population293

occurs.294
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Fig. 3 The rescue effect and the Allee pit with their mechanisms. A–D: The diagrams show the
asymptotic subpopulation sizes N∗

A and N∗
B, in purple and green respectively, for the initial condition

(1, 1) in terms of the Allee effect strength θ for different degrees of connectivity. The gray vertical
lines indicate the θ–values which are chosen for the diagrams in the panels E–K. The dashed red
vertical lines correspond to the critical Allee strength θc,i. E–K: The asymptotic total population
size is plotted in terms of the dispersal rate δ ∈ [0, 0.5]. The dashed grey line is the reference value,
i.e., the sum of the two carrying capacities. With varying θ, seven different (pit) response scenarios
occur for this parameter setting, namely E: (MB) with θ = 0.05, F: (pit–MB) with θ = 0.165 having
a rather small Allee pit which may be hard to see, G: (pit–UB) with θ = 0.33, H: (pit–BTD) with
θ = 0.345, I: (pit–MD) with θ = 0.371, J: (MD–Extinct) with θ = 0.48, K: (Extinct) with θ = 0.7.

For all panels the parameters rA = 1.5, rB = 3.5, K
BH

A = 1 and K
BH

B = 2 are fixed.
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The rescue effect induces new qualitative behaviors in the response scenarios. We295

found six so far unknown response scenarios. The major novelty is what we call an296

Allee pit. For small dispersal rates the asymptotic total population size falls below the297

sum of the two carrying capacities (our reference value) while for dispersal rates greater298

than a critical threshold (δcrit) the asymptotic total population size can increase again299

beyond KA+KB. We refer to the new response scenarios which include an Allee pit as300

pit response scenarios (pit–MB, pit–UB, pit–BTD, and pit–MD) (shown in Fig. 3F–301

3I). They closely correspond to the four response scenarios MB, UB, BTD, and MD302

for θ = 0, shown in Fig. 1. Moreover, a fifth and sixth new response scenario without303

an Allee pit were detected. One is closely related to the response scenario MD. Here304

the novelty is that for large dispersal rates the population goes extinct. In order to305

have a clear distinction, we call this new response scenario MD–Extinct (shown in306

Fig. 3J). Lastly, Extinct is the response scenario in which the population is extinct307

for all dispersal rates (shown in Fig. 3K). Generally in Fig. 3E–3K, we see how the308

response scenarios change with increasing Allee effect strength from the MB response309

scenario over pit response scenarios to the Extinct response scenario.310

The Allee pit induces that the connectivity of the two patches needs to be above a311

critical value before the rescue effect can develop its beneficial impact on the asymp-312

totic total population size. In the pit response scenarios (see Fig. 3F–3I and the313

referring vertical lines in Fig. 3A–3D), for very small dispersal rates the larger patch314

only loses individuals as the number of dispersing individuals is not high enough to315

push subpopulation A above its Allee threshold (vertical lines F, G, H and I in Fig. 3B).316

If subpopulation size A is below its Allee threshold, subpopulation A goes extinct and317

consequently there is no dispersal from patch A to patch B. Therefore, subpopulation318

B has only emigrants and no immigrants and a net loss results for the total popu-319

lation size. This is the reason for the Allee pit. Enhanced connectivity increases the320

number of dispersing individuals from B to A such that patch A can be rescued from321

extinction (follow the vertical lines F, G, H, and I to Fig. 3C and 3D). As soon as the322

rescue takes place, the total population size increases and can even increase beyond323

the reference value KA+KB (in Figs. 3F, 3G, and 3H). The Allee pit is surpassed, and324

the total population benefits from the rescue effect. Larger dispersal rates can reduce325

the degree of benefit again or even cause drastic loss in population size and extinc-326

tion. Therefore, it highly depends on the Allee strength θ whether it is beneficial or327

detrimental to increase the dispersal rate δ.328

3.2 Impact of the Allee effect on the response scenarios329

We now want to investigate how an increased Allee strength influences the resulting330

(pit) response scenarios. In particular, we aim to understand for which Allee strengths331

the Allee pit occurs, depending on habitat heterogeneity. Habitat heterogeneity can332

be represented by different values of the two carrying capacities KA and KB, and the333

two intrinsic growth rates rA and rB. Here, we fix KA, KB and rA while varying rB to334

obtain different degrees of heterogeneity. We therefore specifically investigate which335

parameter combinations of the Allee strength θ and habitat heterogeneity represented336

by rB result in pit response scenarios. To explore this, we run numerical simulations337

for a large range of θ and rB values. The parameter regions for pit response scenarios338
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lie in the so called ‘rescue regions’ as the rescue effect is the underlying mechanism of339

the pit response scenarios. We obtain two such rescue regions R1 and R2, in which one340

of the subpopulations rescues the other. Moreover, there is one region in which rescue341

is not necessary as both subpopulations survive independently (P ); and one region342

where both subpopulations face total extinction (E). The results of our simulations343

are shown in Fig. 4. The four regions are indicated in the inset in Fig. 4. Each color344

indicates a distinct (pit) response scenario as indicated in the color bar. In order to345

illustrate how to understand this figure, we can look at Fig. 3E–3K which correspond346

to a horizontal cut through Fig. 4 for a fixed habitat heterogeneity, i.e., at rB = 3.5,347

along all the occurring (pit) response scenarios when the Allee strength is increased.348

First, we are interested in the parameter regions for which the rescue effect occurs.349

For parameter combinations of θ and rB for which only one of the two subpopulations350

persists in isolation, the rescue effect occurs as soon as the two patches are connected.351

Then, the rescue effect induces in many, but not all, cases an Allee pit. The rescue352

regions encompass all parameter combinations where either patch A is extinct in353

isolation and rescued by B, or vice versa. Therefore, the boundaries of the rescue354

regions are given by the critical Allee strengths θc,i. The rescue effect occurs if and355

only if the Allee strength lies in between the two critical Allee strengths, i.e., for356

θ ∈

{
(θc,A, θc,B), if θc,A < θc,B,

(θc,B, θc,A), if θc,B < θc,A,

where one subpopulation is extinct in isolation and the other subpopulation is viable.357

In Figure 4 the boundaries are plotted based on Eq. (4), reformulated in terms of358

rB. The dashed line indicates the critical Allee strength of patch A, which is indepen-359

dent of rB (and therefore a vertical line). The dashdotted line indicates the critical360

Allee strength of patch B, which is dependent on rB (and therefore a curve). As361

indicated in the inset in Fig. 4, these boundaries divide the diagram into the four362

regions:363

� P – persistence of both patches,364

� R1 – rescue region,365

� R2 – inverse rescue region,366

� E – extinction of both patches.367

In addition to the two regions P and E, in this section we focus on the upper right368

rescue region R1 in which the larger patch B rescues the smaller patch A. The rescue369

region R2 in which the parameter values result in an inverse rescue effect, i.e., the370

smaller patch A rescues the larger patch B, is explained in Appendix B.371

Region P encompasses parameter combinations for which patches A and B both372

persist in isolation and therefore the total population asymptotically persists. For373

θ = 0, the parameter ranges for the four different response scenarios can be found374

analytically (Grumbach et al, 2023). For enhanced Allee strength (θ > 0) the param-375

eter region of the response scenario UB widens. The threshold value of rB to the376

response scenario MB increases and the threshold value to the response scenarios377

BTD decreases. The parameter region of the response scenario MD shrinks. For Allee378
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strengths very close to θc,A, also the parameter region of the response scenario BTD379

drastically shrinks, which may be hard to see in Fig. 4. Parameter combinations for380

which both subpopulations go extinct in isolation and therefore the entire population381

dies out, i.e., the response scenario Extinct, are part of region E.382
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Fig. 4 The response scenarios for parameter combinations of the Allee strength θ and the growth
rate rB. Each color refers to one of the scenarios as indicated in the colorbar on the right side. The
dashed and dashdotted lines coincide with the bifurcation points for the isolated subpopulations, i.e.,
θ0,A and θ0,B, respectively, as given in Eq. (4). Schematically, the bifurcation curves are boundaries

between the four regions P , R1, R2, and E as shown in the inset. The parameters rA = 1.5, K
BH

A = 1

and K
BH

B = 2 are fixed. The method utilized to generate this figure is outlined in Appendix A.1. A
zoom into the lower left corner, i.e., region R2, can be found in Fig. A2 in Appendix A.

The rescue region R1 encompasses the parameter region for which subpopulation383

A would be extinct in isolation. Connectivity can facilitate subpopulation B to rescue384

subpopulation A from extinction. The mechanism was explained in Sect. 3.1. The left385

boundary of R1 is the critical Allee strength of patch A. This is the threshold at which386

the response scenarios without an Allee pit change to pit response scenarios. At this387

threshold MB switches to pit–MB, UB switches to pit–UB, and BTD switches to pit–388

BTD. The system changes from having five equilibria with three stable states to having389

three equilibia with only two stable states. The stable state which may disappear for390
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increased θ is the coexistence equilibrium ECoex = (KA,KB). Therefore, for small391

dispersal rates individuals from patch B move into patch A, where the subpopulation392

lies below its Allee threshold, which causes the Allee pit. Increased connectivity enables393

sufficiently many individuals to disperse into patch A such that the subpopulation size394

grows beyond the Allee threshold, the stable state ECoex appears, and therefore both395

subpopulations coexist at a larger population size. This mechanism can be seen in the396

change of the existence of equilibria from Fig. 2E to 2F. For values of θ very close to397

the left boundary of R1 the Allee pit is extremely narrow and shallow (cf. Fig. 5), i.e.,398

connectivity ‘immediately’ (for an extremely small dispersal rate) rescues the extinct399

subpopulation.400

At the right boundary of R1 for Allee strengths below the critical value θ0,B the401

response scenario does not include an Allee pit. The conditions in both patches are402

highly vulnerable. The larger patch can avoid immediate extinction for small dispersal403

rates but cannot avoid extinction for greater dispersal rates. Therefore we obtain the404

MD–Extinct response scenario.405

In the transition from P to R1 and then to E, we discover that an increasing406

Allee strength increases the pressure on the total population. This pressure results407

in a change of response scenarios from beneficial ones to highly detrimental ones and408

even to extinction. A closer look at the width and depth of the Allee pit helps us to409

understand how the qualitatively similar response scenarios in one color segment of410

Fig. 4 differ in their potential consequences.411

3.3 The width and depth of Allee pits412

We already highlighted that the asymptotic total population size in isolation, i.e.,413

KA+KB, decreases with increasing Allee strength θ. This pressure on the population414

might make a metapopulation even more prone to extinction. Especially the Allee pit415

can potentially further decrease a population size drastically close to zero or the Allee416

threshold such that small perturbations in external factors could drive a population to417

extinction. This risk of extinction can be diminished by increasing the dispersal rate418

beyond the critical dispersal rate δcrit above which connectivity is beneficial. Therefore,419

we want to have a closer look at the width of Allee pits (which we define the distance420

between zero and the critical dispersal rate) and the depth of Allee pits (which we421

define the absolute difference between the sum of the two carrying capacities and the422

local minimum of the asymptotic total population size). We understand the depth of423

the Allee pit as a measure of the stochastic extinction probability.424

The shapes of Allee pits vary a lot depending on the parameter values. They mainly425

differ in their width and depth as illustrated in Fig. 5. In Fig. 5A the pit is narrow426

and shallow which means the critical dispersal rate is very small and little risk comes427

along with the Allee pit. In contrast, in Fig. 5B the Allee pit is also very narrow but428

deep and therefore the population declines locally close to zero (or potentially to the429

Allee threshold). In Fig. 5C the Allee pit is very shallow but wide. The induced risk430

of stochastic extinction is rather low but the total population is less likely to benefit431

from increased connectivity. Figure 5D shows an Allee pit which is deep and wide. It432

induces a high risk of stochastic extinction which can only be diminished by drastically433

increasing connectivity.434
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Fig. 5 Different shapes of Allee pits. They differ in width and depth and therefore in their critical
dispersal rates δcrit and risks of extinction (the distance from zero to the local minimum indicated by
a red circle). The depth of the Allee pit varies in the four panels from shallow (left panels, indicated
by thin and short red arrows) to deep (right panels, indicated by thick and long red arrows). The
width of the Allee pit varies in the four panels from narrow (upper panels, indicated by thin and
short purple arrows) to wide (lower panels, indicated by thick and long purple arrows).

Figure 6 shows the critical dispersal rate and the minimum asymptotic total popu-435

lation size of the Allee pits occuring in the pit response scenarios across a large range436

of parameter combinations of θ and rB. The method utilized to generate this figure is437

outlined in Appendix A.2. Figure 6A focuses on the width of the Allee pit. The greater438

the Allee strength θ the larger the critical dispersal rate and therefore the wider the439

Allee pit. Within both rescue regions R1 and R2 (cf. Fig. 4), larger rB values have a440

larger maximal width (indicated by a darker coloring) with increasing Allee strength.441

In Figure 6B we see that for increased Allee strength θ the minimum population442

size decreases and therefore the Allee pit gets deeper. For parameter combinations443

close to the intersection of the region boundaries θ0,A and θ0,B the minimum takes444

lower values. Approaching the intersection, both patches get closer to their bifurcation445

points, i.e., close to extiction. This explains why the depth and width of the Allee pit446

increases (a lot) in a small neighborhood of the intersection. Especially for parameter447

combinations in R2 the minimum is very close to zero, which induces an increased448

risk of extinction for the total population. We can infer that situations in which the449

smaller patch rescues the larger patch potentially generate a severe risk of extinction.450
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Fig. 6 Width and depth of Allee pits. A: The critical dispersal rate which corresponds to the width
of the Allee pit. B: The minimum asymptotic total population size which corresponds to the depth
of the Allee pit. The plots are generated only in parameter regions in which pit response scenarios
occur; other parameter regions are shown in white. In both panels the dashed and dashdotted lines

coincide with the boundaries θ0,A and θ0,B in Fig. 4. We fixed rA = 1.5, K
BH

A = 1 and K
BH

B = 2.

4 Discussion and Conclusions451

We found that the mate-finding Allee effect in two connected patches can induce an452

Allee pit. The existence of the Allee pit signifies that mild or moderate increases453

in connectivity are detrimental, i.e. the asymptotic total population size decreases454

with increasing dispersal rate when the latter is low. This means that the Allee effect455

is another (and novel) mechanism where a stronger coupling between patches can456

be disadvantageous. The Allee pit can be ‘dangerous’ for a population as it may457

decrease the total population size drastically for certain degrees of connectivity. This is458

especially the case when the larger patch gets vulnerable and extinction prone (evident459

for parameter combinations in region R2 in Fig. 6).460

The difference between the pit response scenarios and other response scenarios is461

the Allee pit. It emerges from the ‘attempt’ of the larger patch to rescue the smaller462

one which results, for too little connectivity, in a loss of individuals for the total pop-463

ulation. Individuals die after dispersing as the subpopulation size is still below the464

Allee threshold. That causes the Allee pit for small dispersal. Enhanced connectivity465

facilitates the occurrence of the rescue effect which can reestablish an extinct subpop-466

ulation, resulting in overcoming the Allee pit when a critical threshold of connectivity467

is surpassed. For dispersal rates beyond that critical dispersal rate the subpopulations468

grow above their Allee thresholds and total population then benefits from connec-469

tivity. The asymptotic total population size can increase beyond the sum of the two470
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carrying capacities and can thus turn from detrimental to beneficial. This could be471

an important point of orientation for conservation management, as the latter should472

increase connectivity to dispersal rates beyond those critical values. This would make473

sure that the connectivity is large enough to enable the population to gain from the474

rescue effect rather than suffering under the Allee pit risks. Apart from the Allee475

pit, the biological mechanisms behind the four pit response scenarios are qualitatively476

similar to the ones of the response scenarios MB, UB, BTD, and MD, respectively477

described in Grumbach et al (2023).478

Two further response scenarios have been identified in this study: MD–Extinct and479

Extinct. In MD–Extinct, the asymptotic total population size decreases with increased480

connectivity, akin to MD, and goes extinct for large dispersal rates. This is because481

for some dispersal rates, one or both asymptotic subpopulation sizes fall below their482

Allee thresholds and therefore (sub-)population extinction occurs. If both subpopu-483

lation sizes remain above their Allee thresholds, the response scenario reverts to MD484

instead of MD–Extinct. This emphasizes once again that the Allee effect is particu-485

larly dangerous for small and declining populations. The Extinct response scenario486

only occurs when the Allee strength exceeds the critical Allee strengths of both sub-487

populations, resulting in extinction for both subpopulations in isolation as well as for488

all levels of connectivity.489

Throughout this paper we looked at the rescue of one patch in which the sub-490

population is extinct in isolation by another viable patch. Our framework can be491

biologically interpreted and applied in other contexts as well. The viable subpopula-492

tion can, for example, be understood as an invasive species which attempts to invade493

a new patch. In this setting the other subpopulation is zero, as the invasive species494

does not yet inhabit this patch. The Allee pit signifies a loss of individuals attempt-495

ing to invade while for dispersal rates beyond the critical dispersal rate the invasive496

species can establish in the new patch.497

It is interesting to look at circumstances under which Allee pits and the rescue498

effect occur. Figure 4 suggests that the range of Allee strengths θ inducing an Allee499

pit in region R1 expands with rB . Biological explanations for this might be that a500

larger growth rate in subpopulation B enables the subpopulation to reproduce faster.501

Therefore, it can rescue the other subpopulation A even for stronger Allee effects502

before the pressure of the Allee effect induces extinction. For other parameter settings503

we obtained a similar result.504

Within the rescue region, the thresholds between the pit response scenarios were505

not described analytically here but obtained by numerical simulations. The explicit506

determination of these thresholds remains an open problem for future research. The507

analytical description of the critical dispersal rate remains an open question as well.508

The coupled system which was investigated in this study can have up to nine509

equilibria, of which up to four are stable. For our numerical simulations we chose an510

inintial condition from the basin of attraction of the coexistence equilibrium ECoex =511

(KA,KB). In conservation ecology we are mostly interested in the highest chance512

of persistence for all subpopulations. As we saw in our results even the coexistence513

equilibrium ECoex may be exposed to a high risk of extinction due to the Allee effect.514

With a different choice of initial conditions than the chosen one throughout this paper,515
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different stable equilibria would be approached. Given that the other equilibria are516

characterized by smaller (sub)population sizes, populations are at risk of extinction517

at lower Allee strength levels compared to the equilibrium ECoex. While the results518

are expected to be comparable, other initial conditions could lead to narrower rescue519

regions and pits, potentially increasing the risk of stochastic extinction across a wider520

parameter range.521

In this study the mate-finding Allee effect was considered. Among various forms522

of Allee effects, including those driven by predation or phenomenological factors, the523

mate-finding Allee effect stands out as one of the most frequently observed phenom-524

ena in empirical studies (Courchamp et al, 2008; Kramer et al, 2009). Results may525

be expected to hold qualitatively also for other forms of Allee effects, such as the526

predation-driven Allee effect. We assumed that the mate-finding Allee effect occurs527

symmetrically and independently within each patch. Nevertheless, it is an interesting528

question for future work to assume the Allee effect to occur in only one of the patches529

and how fragmentation complicates mate finding across (and not only within) different530

patches.531

The term ‘critical dispersal rate’ has been used in various contexts in the literature532

and can refer to different phenomena. For instance, Vortkamp et al (2022) consider533

the BTD response scenario and define the critical dispersal rate as the smallest disper-534

sal rate at which the asymptotic total population size falls below the reference value.535

Thus, their critical dispersal rate delineates a transition from a beneficial to a detri-536

mental effect. Critical dispersal rates that mark a similar transition from positive to537

negative outcomes, e.g., from survival to extinction, have been found when dispersal538

is costly (Kirkland et al, 2006) or from suitable habitats to hostile environments as in539

the KiSS model (Kierstead and Slobodkin, 1953; Skellam, 1951), see Ryabov and Bla-540

sius (2008) for a review. By contrast, our critical dispersal rate describes a transition541

from negative to positive effects of increasing dispersal, as it identifies the dispersal542

rate at which the detrimental Allee pit switches to a beneficial effect. Similar positive543

effects of increased dispersal have been observed in patch occupancy models when a544

metapopulation is to balance local extinction by recolonization (Levins, 1969) or in545

spatially explicit models when a single population is to track shifting climatic condi-546

tions (Potapov and Lewis, 2004; Leroux et al, 2013; Kerr, 2020), prevent being washed547

out in advective environments such as streams and rivers (Speirs and Gurney, 2001;548

Lutscher et al, 2005; Hilker and Lewis, 2010), or avoid sinking in the vertical water549

column (Shigesada and Okubo, 1981; Huisman et al, 2002). Vortkamp et al (2020)550

found that dispersal can prevent essential extinction in coupled patches with Allee551

thresholds and overcompensation.552

In the context of conservation and landscape planning, the question of which man-553

agement strategies are the most effective often centers on identifying and promoting554

optimal network structures (e.g., Watts et al, 2009; DeAngelis et al, 2021). However,555

‘optimal’ can be understood in various ways: in terms of maximizing biomass (e.g.,556

Gadgil, 1971; Freedman and Waltman, 1977; DeAngelis et al, 1979; Vance, 1980; Holt,557

1985; Arditi et al, 2015; Franco and Ruiz-Herrera, 2015; Zhang et al, 2017; Grumbach558

et al, 2023), enhancing growth rates (e.g., Nguyen et al, 2023), ensuring evolutionary559

stability (e.g., Kirkland et al, 2006), or determining the ideal spacing between habitat560
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patches in presence of disturbances (e.g., White et al, 2021; Crespo-Miguel et al, 2022).561

The work of White et al (2021) emphasizes the trade-off between disturbance impacts562

and successful dispersal for recolonization, concluding that intermediate patch spac-563

ing (translating into intermediate dispersal) is optimal. Also in our results there are564

scenarios in which intermediate dispersal rates maximize the asymptotic total popu-565

lation size, namely BTD and pit–BTD. But the crucial point in our findings is the566

existence of a critical dispersal rate; if not exceeded, small increases in dispersal can567

lead to worse outcomes rather than improvements, suggesting that no management568

is better than poor management. The critical dispersal rate emerges solely through569

spatial heterogeneity and the Allee effect, even in the absence of disturbances and570

distance-dependent dispersal success. This underlines the importance of considering571

life-history trade-offs in the context of Allee effects, which can play a crucial role in572

determining the best management strategies, where avoiding worsening the situation573

could be more critical than finding the optimal solution.574

In summary, our study underlines the pivotal role of connectivity and the Allee575

effect in shaping population dynamics in fragmented habitats. We found that low576

connectivity can lead to population declines in form of Allee pits, while enhanced con-577

nectivity facilitates the rescue effect, mitigating extinction risks. Our results emphasize578

the importance of achieving dispersal rates above a critical threshold to maximize the579

benefits of connectivity for population persistence. Overall, these findings offer funda-580

mental and potentially valuable insights for the development of effective conservation581

strategies in fragmented landscapes.582
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Appendix A Numerical methods605

A.1 Methods for Figure 4606

In the following we explain the numerical method which we utilized to generate Fig. 4.607

We solved Eq. (1) with the initial condition (1, 1), which lies in the basin of attraction608

of the equilibrium (KA,KB) if it exists, for 500 time steps. We repeated this for 300609

equidistant dispersal rates δ ∈ [0, 0.5]. We also did this for a large range of Allee610

strengths and growth rates in patch B, each with 180 equidistant values in the ranges611

shown in Fig 4. All other parameter values were fixed.612

For each parameter combination of θ and rB, and for each dispersal rate value,613

we saved the total population size, i.e., the sum of N∗
A and N∗

B in Eq. (1), after 500614

time steps. We interpreted the total population size at the 500th time step as the615

asymptotic total population size Ntot, to which we refer as the ATPS. We did not find616

any evidence for sustained oscillations.617

As the respective reference valueRef for the ATPS, marking the transition between618

beneficial and detrimental effects, we used the ATPS at δ = 0, i.e., KA + KB. For619

each combination of θ and rB, let ATPS(δ) denote the ATPS for one of the discretized620

dispersal rate values. ATPS(δmax) is the ATPS at the largest dispersal rate value.621

Then ATPS(∆δ) is the ATPS at the smallest positive dispersal rate value, as ∆δ is the622

step size of the dispersal rate discretization. The response scenarios for each parameter623

combination of θ and rB were detected and classified by four different criteria as624

visualized in Fig. A1.625

The first step of the classification is based on the slope of the ATPS at zero dispersal626

(cf. Fig. A1(I)). To this end, we compared the ATPS at the smallest positive dispersal627

rate to Ref . The ATPS(∆δ) lies above Ref for the response scenarios MB, UB, and628

BTD. The ATPS(∆δ) is equal to Ref in the response scenario Extinct; in this case,629

the ATPS is zero for all dispersal rates. The ATPS(∆δ) lies below Ref for all pit630

response scenarios and the detrimental response scenarios (MD, MD–Extinct).631

Second, we distinguished the two resulting groups of response scenarios by com-632

paring the ATPS at the largest dispersal rate value, i.e., ATPS(δmax), to Ref633

(cf. Fig. A1(II)). The response scenarios which have a beneficial effect for large dis-634

persal rates are MB and UB with a positive slope in (I), and pit–MB and pit–UB635

with a negative slope in (I). The response scenarios which have a detrimental effect or636

lead to extinction for large dispersal rates are BTD with a positive slope in (I), and637

pit–BTD, pit–MD, MD, and MD–Extinct with a negative slope in (I).638
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ATPS(Δ𝛿𝛿) = 𝑅𝑅𝑅𝑅𝑅𝑅 = 0

ATPS(𝛿𝛿)

ATPS(Δ𝛿𝛿) > 𝑅𝑅𝑅𝑅𝑅𝑅 ATPS(Δ𝛿𝛿) < 𝑅𝑅𝑅𝑅𝑅𝑅

Extinct

(I)

ATPS(𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) > 𝑅𝑅𝑅𝑅𝑅𝑅 ATPS(𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) > 𝑅𝑅𝑅𝑅𝑅𝑅ATPS(𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) < 𝑅𝑅𝑅𝑅𝑅𝑅

BTD

(II)

#SC = 0 #SC = 1(III) #SC = 2

MB UB pit-MB pit-UB

#SC = 0

ATPS(𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) > 0 ATPS(𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) = 0 ATPS(𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) > 0(IV)

#SC = 1#SC = 2

pit-BTD pit-MD MD-Extinct MD

Fig. A1 The decision tree for the classification of the response scenarios. ATPS(∆δ) is the asymp-
totic total population size at the smallest positive dispersal rate. ATPS(δmax) is the asymptotic total
population size at the largest dispersal rate value. #SC is the count of the sign changes of the differ-
ences between the ATPS at consecutive dispersal rate values. The red symbols indicate the criteria
(I)–(IV) in the small graphs, which sketch the ATPS as a function of the dispersal rate.

Third, we further distinguished the response scenarios based on the number of local639

extrema of ATPS(δ). Therefore, we counted the number of changes in the slope of the640

ATPS, which we calculated by comparing the signs of the differences between ATPSs641

at consecutive dispersal rate values δi and δi+1, where i ∈ [0, 299] (cf. Fig. A1(III)).642

This served to clearly distinguish between the response scenarios MB (zero extrema),643

UB (one maximum), pit–MB (one minimum), and pit–UB (two extrema). This leaves644

pit–BTD and pit–MD (each of which have two local extrema), and MD–Extinct and645

MD (each of which have no local extrema), for which we used a further criterion.646

Finally, by checking whether the ATPS at the largest dispersal rate value,647

i.e., ATPS(δmax), is positive or zero, we distinguished between pit–BTD (positive at648

largest dispersal rate), pit–MD (zero at largest dispersal rate), MD (positive at largest649

dispersal rate), and MD–Extinct (zero at largest dispersal rate) (cf. Fig. A1(IV)).650
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A.2 Methods for Figure 6651

In the following we explain the numerical method which we utilized to generate Fig. 6.652

To calculate the critical dispersal rate and the minimum ATPS for the four pit response653

scenarios, we used the response scenario classification outlined in Appendix A.1.654

As the critical dispersal rate we saved the dispersal rate value for which the differ-655

ence between the ATPS and Ref (which is negative for small dispersal rates due to656

the Allee pit) is either zero or positive for the first time when increasing the discretized657

dispersal rate.658

In order to determine the Allee pit minimum, we looked for the first change from659

a negative to a positive slope of the ATPS when increasing the discretized dispersal660

rate. We started from dispersal rate zero. As the minimum we saved the ATPS for the661

dispersal rate value for which the difference between two consecutive ATPSs is either662

zero or positive for the first time.663
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Fig. A2 The response scenarios in rescue region R2, i.e., the inverse rescue effect, for parameter
combinations of the Allee strength θ and the growth rate rB. This is a zoom into the lower left corner
of Fig. 4. Each color refers to one of the response scenarios as indicated in the colorbar. The dashed
and dashdotted lines coincide with the boundaries in the inset of Fig. 4. The parameters rA = 1.5,

K
BH

A = 1 and K
BH

B = 2 are fixed.
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Appendix B The inverse rescue effect664

In Sect. 3.2 we closely looked at the change of the response scenarios for increasing665

Allee strength. We focused on the rescue region R1 in Fig. 4, in which the larger666

subpopulation B persists in isolation, while the smaller subpopulation A would die667

out in isolation. Therefore, in R1 patch B rescues patch A. Here, we briefly look at668

region R2 in which the inverse rescue effect occurs, i.e., ‘the smaller’ (in terms of K
BH

i )669

subpopulation A survives in isolation and can rescue ‘the larger’ subpopulation B by670

increased connectivity.671

Figure A2 shows the results of our numerical simulations zoomed in the parameter672

values of region R2. In the absence of the Allee effect only the four response scenarios673

MB, UB, BTD, and MD occur. As soon as the Allee strength is greater than zero, we674

obtain the pit response scenarios due to the rescue effect in the rescue region R2. For675

smaller r2–values we still obtain the MD response scenario for small Allee strengths.676

For increased Allee strength the parameter combinations in rescue region R2 result677

in the MD–Extinct response scenario. Patch A can prevent patch B from immediate678

extinction for small dispersal but for larger dispersal the total population dies out.679
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Fahrig L, Arroyo-Rodŕıguez V, Bennett JR, et al (2019) Is habitat fragmentation730

bad for biodiversity? Biological Conservation 230:179–186. https://doi.org/10.1016/731

j.biocon.2018.12.026732

Ferdy JB, Molofsky J (2002) Allee effect, spatial structure and species coexistence.733

Journal of Theoretical Biology 217(4):413–424. https://doi.org/10.1006/jtbi.2002.734

3051735

Fletcher Jr RJ, Didham RK, Banks-Leite C, et al (2018) Is habitat fragmentation736

good for biodiversity? Biological Conservation 226:9–15. https://doi.org/10.1016/j.737

24

https://doi.org/10.1088/1742-5468/ac4982
https://doi.org/10.3934/mbe.2020090
https://doi.org/10.3934/mbe.2020090
https://doi.org/10.3934/mbe.2020090
https://doi.org/10.1016/0040-5809(79)90008-X
https://doi.org/10.3390/math8010049
https://doi.org/10.3390/math8010049
https://doi.org/10.3390/math8010049
https://doi.org/10.3934/dcdsb.2014.19.3087
https://doi.org/10.3934/dcdsb.2014.19.3087
https://doi.org/10.3934/dcdsb.2014.19.3087
https://doi.org/10.1007/s11538-021-00927-y
https://doi.org/10.1890/1051-0761(2002)012[0346:EOHFOT]2.0.CO;2
https://doi.org/10.1890/1051-0761(2002)012[0346:EOHFOT]2.0.CO;2
https://doi.org/10.1890/1051-0761(2002)012[0346:EOHFOT]2.0.CO;2
https://doi.org/10.1146/annurev-ecolsys-110316-022612
https://doi.org/10.1146/annurev-ecolsys-110316-022612
https://doi.org/10.1146/annurev-ecolsys-110316-022612
https://doi.org/10.1016/j.biocon.2018.12.026
https://doi.org/10.1016/j.biocon.2018.12.026
https://doi.org/10.1016/j.biocon.2018.12.026
https://doi.org/10.1006/jtbi.2002.3051
https://doi.org/10.1006/jtbi.2002.3051
https://doi.org/10.1006/jtbi.2002.3051
https://doi.org/10.1016/j.biocon.2018.07.022
https://doi.org/10.1016/j.biocon.2018.07.022
https://doi.org/10.1016/j.biocon.2018.07.022


biocon.2018.07.022738

Franco D, Ruiz-Herrera A (2015) To connect or not to connect isolated patches.739

Journal of Theoretical Biology 370:72–80. https://doi.org/10.1016/j.jtbi.2015.01.740

029741

Freedman H, Waltman P (1977) Mathematical models of population interactions with742

dispersal. I: Stability of two habitats with and without a predator. SIAM Journal743

on Applied Mathematics 32(3):631–648. https://doi.org/10.1137/0132052744

Gadgil M (1971) Dispersal: population consequences and evolution. Ecology 52(2):253–745

261. https://doi.org/10.2307/1934583746

Gao D, Lou Y (2022) Total biomass of a single population in two-patch environments.747

Theoretical Population Biology 146:1–14. https://doi.org/10.1016/j.tpb.2022.05.003748

Gascoigne J, Berec L, Gregory S, et al (2009) Dangerously few liaisons: a review of749

mate-finding Allee effects. Population Ecology 51:355–372. https://doi.org/10.1007/750

s10144-009-0146-4751

Gotelli NJ (1991) Metapopulation models: the rescue effect, the propagule rain, and752

the core-satellite hypothesis. The American Naturalist 138(3):768–776. https://doi.753

org/10.1086/285249754

Grumbach C, Reurik FN, Segura J, et al (2023) The effect of dispersal on asymptotic755

total population size in discrete-and continuous-time two-patch models. Journal of756

Mathematical Biology 87(4):60. https://doi.org/10.1007/s00285-023-01984-8757

Gyllenberg M, Hemminki J, Tammaru T (1999) Allee effects can both conserve and758

create spatial heterogeneity in population densities. Theoretical Population Biology759

56(3):231–242. https://doi.org/10.1006/tpbi.1999.1430760

Haddad NM, Brudvig LA, Damschen EI, et al (2014) Potential negative ecological761

effects of corridors. Conservation Biology 28(5):1178–1187. https://doi.org/10.1111/762

cobi.12323763

Hilker FM, Lewis MA (2010) Predator–prey systems in streams and rivers. Theoretical764

Ecology 3:175–193. https://doi.org/10.1007/s12080-009-0062-4765

Holt RD (1985) Population dynamics in two-patch environments: some anomalous766

consequences of an optimal habitat distribution. Theoretical Population Biology767

28(2):181–208. https://doi.org/10.1016/0040-5809(85)90027-9768

Huisman J, Arrayás M, Ebert U, et al (2002) How do sinking phytoplankton species769

manage to persist? The American Naturalist 159(3):245–254. https://doi.org/10.770

1086/338511771

25

https://doi.org/10.1016/j.biocon.2018.07.022
https://doi.org/10.1016/j.biocon.2018.07.022
https://doi.org/10.1016/j.biocon.2018.07.022
https://doi.org/10.1016/j.jtbi.2015.01.029
https://doi.org/10.1016/j.jtbi.2015.01.029
https://doi.org/10.1016/j.jtbi.2015.01.029
https://doi.org/10.1137/0132052
https://doi.org/10.2307/1934583
https://doi.org/10.1016/j.tpb.2022.05.003
https://doi.org/10.1007/s10144-009-0146-4
https://doi.org/10.1007/s10144-009-0146-4
https://doi.org/10.1007/s10144-009-0146-4
https://doi.org/10.1086/285249
https://doi.org/10.1086/285249
https://doi.org/10.1086/285249
https://doi.org/10.1007/s00285-023-01984-8
https://doi.org/10.1006/tpbi.1999.1430
https://doi.org/10.1111/cobi.12323
https://doi.org/10.1111/cobi.12323
https://doi.org/10.1111/cobi.12323
https://doi.org/10.1007/s12080-009-0062-4
https://doi.org/10.1016/0040-5809(85)90027-9
https://doi.org/10.1086/338511
https://doi.org/10.1086/338511
https://doi.org/10.1086/338511


IPBES (2019) Summary for policymakers of the global assessment report on biodi-772

versity and ecosystem services of the Intergovernmental Science-Policy Platform773

on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany, https:774

//doi.org/10.5281/zenodo.3831673775

Kang Y (2013) Scramble competitions can rescue endangered species subject to strong776

Allee effects. Mathematical Biosciences 241(1):75–87. https://doi.org/10.1016/j.777

mbs.2012.09.002778

Kang Y (2015) Dynamics of a generalized Beverton-Holt competition model subject to779

allee effects. arXiv preprint arXiv:150505913 https://doi.org/10.48550/arXiv.1505.780

05913781

Kang Y, Armbruster D (2011) Dispersal effects on a discrete two-patch model for782

plant–insect interactions. Journal of Theoretical Biology 268(1):84–97. https://doi.783

org/10.1016/j.jtbi.2010.09.033784

Kerr JT (2020) Racing against change: understanding dispersal and persistence785

to improve species’ conservation prospects. Proceedings of the Royal Society B786

287(1939):20202,061. https://doi.org/10.1098/rspb.2020.2061787

Kierstead H, Slobodkin LB (1953) The size of water masses containing plankton788

blooms. Journal of Marine Research 12(1):141–147789

Kirkland S, Li CK, Schreiber SJ (2006) On the evolution of dispersal in patchy land-790

scapes. SIAM Journal on Applied Mathematics 66(4):1366–1382. https://doi.org/791

10.1137/050628933792

Kramer AM, Dennis B, Liebhold AM, et al (2009) The evidence for Allee effects.793

Population Ecology 51:341–354. https://doi.org/10.1007/s10144-009-0152-6794

Leroux SJ, Larrivée M, Boucher-Lalonde V, et al (2013) Mechanistic models for the795

spatial spread of species under climate change. Ecological Applications 23(4):815–796

828. https://doi.org/10.1890/12-1407.1797

Levins R (1969) Some demographic and genetic consequences of environmental het-798

erogeneity for biological control. Bulletin of the Entomological Society of America799

15(3):237–240. https://doi.org/10.1093/besa/15.3.237800

Lutscher F, Pachepsky E, Lewis MA (2005) The effect of dispersal patterns on stream801

populations. SIAM Review 47(4):749–772. https://doi.org/10.1137/05063615802

Maciel GA, Lutscher F (2015) Allee effects and population spread in patchy land-803

scapes. Journal of Biological Dynamics 9(1):109–123. https://doi.org/10.1080/804

17513758.2015.1027309805

26

https://doi.org/10.5281/zenodo.3831673
https://doi.org/10.5281/zenodo.3831673
https://doi.org/10.5281/zenodo.3831673
https://doi.org/10.1016/j.mbs.2012.09.002
https://doi.org/10.1016/j.mbs.2012.09.002
https://doi.org/10.1016/j.mbs.2012.09.002
https://doi.org/10.48550/arXiv.1505.05913
https://doi.org/10.48550/arXiv.1505.05913
https://doi.org/10.48550/arXiv.1505.05913
https://doi.org/10.1016/j.jtbi.2010.09.033
https://doi.org/10.1016/j.jtbi.2010.09.033
https://doi.org/10.1016/j.jtbi.2010.09.033
https://doi.org/10.1098/rspb.2020.2061
https://doi.org/10.1137/050628933
https://doi.org/10.1137/050628933
https://doi.org/10.1137/050628933
https://doi.org/10.1007/s10144-009-0152-6
https://doi.org/10.1890/12-1407.1
https://doi.org/10.1093/besa/15.3.237
https://doi.org/10.1137/05063615
https://doi.org/10.1080/17513758.2015.1027309
https://doi.org/10.1080/17513758.2015.1027309
https://doi.org/10.1080/17513758.2015.1027309


Matter SF (2001) Synchrony, extinction, and dynamics of spatially segregated, het-806

erogeneous populations. Ecological Modelling 141(1-3):217–226. https://doi.org/10.807

1016/S0304-3800(01)00275-7808

Miller-Rushing AJ, Primack RB, Devictor V, et al (2019) How does habitat fragmenta-809

tion affect biodiversity? A controversial question at the core of conservation biology.810

Biological Conservation 232:271–273. https://doi.org/10.1016/j.biocon.2018.12.029811

Nguyen TD, Wu Y, Veprauskas A, et al (2023) Maximizing metapopulation growth812

rate and biomass in stream networks. SIAM Journal on Applied Mathematics813

83(6):2145–2168. https://doi.org/10.1137/23M1556757814

Pal D, Samanta G (2018) Effects of dispersal speed and strong Allee effect on stability815

of a two-patch predator–prey model. International Journal of Dynamics and Control816

6:1484–1495. https://doi.org/10.1007/s40435-018-0407-1817

Potapov AB, Lewis MA (2004) Climate and competition: The effect of moving range818

boundaries on habitat invasibility. Bulletin of Mathematical Biology 66:975–1008.819

https://doi.org/10.1016/j.bulm.2003.10.010820

Ryabov AB, Blasius B (2008) Population growth and persistence in a heterogeneous821

environment: the role of diffusion and advection. Mathematical Modelling of Natural822

Phenomena 3(3):42–86. https://doi.org/10.1051/mmnp:2008064823

Saha S, Samanta G (2019) Influence of dispersal and strong Allee effect on a two-patch824

predator–prey model. International Journal of Dynamics and Control 7:1321–1349.825

https://doi.org/10.1007/s40435-018-0490-3826

Sato K (2009) Allee threshold and extinction threshold for spatially explicit metapop-827

ulation dynamics with Allee effects. Population Ecology 51:411–418. https://doi.828

org/10.1007/s10144-009-0156-2829

Schreiber SJ (2003) Allee effects, extinctions, and chaotic transients in simple pop-830

ulation models. Theoretical Population Biology 64(2):201–209. https://doi.org/10.831

1016/S0040-5809(03)00072-8832

Shigesada N, Okubo A (1981) Analysis of the self-shading effect on algal vertical833

distribution in natural waters. Journal of Mathematical Biology 12:311–326. https:834

//doi.org/10.1007/BF00276919835

Simberloff D, Cox J (1987) Consequences and costs of conservation corridors. Conser-836

vation Biology 1(1):63–71. https://doi.org/10.1111/j.1523-1739.1987.tb00010.x837

Skellam JG (1951) Random dispersal in theoretical populations. Biometrika838

38(1/2):196–218. https://doi.org/10.2307/2332328839

27

https://doi.org/10.1016/S0304-3800(01)00275-7
https://doi.org/10.1016/S0304-3800(01)00275-7
https://doi.org/10.1016/S0304-3800(01)00275-7
https://doi.org/10.1016/j.biocon.2018.12.029
https://doi.org/10.1137/23M1556757
https://doi.org/10.1007/s40435-018-0407-1
https://doi.org/10.1016/j.bulm.2003.10.010
https://doi.org/10.1051/mmnp:2008064
https://doi.org/10.1007/s40435-018-0490-3
https://doi.org/10.1007/s10144-009-0156-2
https://doi.org/10.1007/s10144-009-0156-2
https://doi.org/10.1007/s10144-009-0156-2
https://doi.org/10.1016/S0040-5809(03)00072-8
https://doi.org/10.1016/S0040-5809(03)00072-8
https://doi.org/10.1016/S0040-5809(03)00072-8
https://doi.org/10.1007/BF00276919
https://doi.org/10.1007/BF00276919
https://doi.org/10.1007/BF00276919
https://doi.org/10.1111/j.1523-1739.1987.tb00010.x
https://doi.org/10.2307/2332328


Soanes K, Rytwinski T, Fahrig L, et al (2024) Do wildlife crossing structures mitigate840

the barrier effect of roads on animal movement? A global assessment. Journal of841

Applied Ecology 61(3):417–430. https://doi.org/10.1111/1365-2664.14582842

Speirs DC, Gurney WSC (2001) Population persistence in rivers and estuaries. Ecol-843

ogy 82(5):1219–1237. https://doi.org/10.1890/0012-9658(2001)082[1219:PPIRAE]844

2.0.CO;2845

Sun GQ (2016) Mathematical modeling of population dynamics with Allee effect.846

Nonlinear Dynamics 85:1–12. https://doi.org/10.1007/s11071-016-2671-y847

Tewksbury JJ, Levey DJ, Haddad NM, et al (2002) Corridors affect plants,848

animals, and their interactions in fragmented landscapes. Proceedings of the849

National Academy of Sciences 99(20):12,923–12,926. https://doi.org/10.1073/pnas.850

202242699851

Turner MG, Gardner RH, O’neill RV, et al (2001) Landscape ecology in theory and852

practice. Springer New York, https://doi.org/10.1007/b97434853

Van Schmidt ND, Beissinger SR (2020) The rescue effect and inference from isolation–854

extinction relationships. Ecology Letters 23(4):598–606. https://doi.org/10.1111/855

ele.13460856

Vance RR (1980) The effect of dispersal on population size in a temporally vary-857

ing environment. Theoretical Population Biology 18(3):343–362. https://doi.org/0.858

1016/0040-5809(80)90058-1859

Vortkamp I, Schreiber SJ, Hastings A, et al (2020) Multiple attractors and long860

transients in spatially structured populations with an allee effect. Bulletin of861

Mathematical Biology 82:1–21. https://doi.org/10.1007/s11538-020-00750-x862

Vortkamp I, Kost C, Hermann M, et al (2022) Dispersal between interconnected863

patches can reduce the total population size. bioRxiv 2022.04.28.489935. https:864

//doi.org/10.1101/2022.04.28.489935865

Wang W (2016) Population dispersal and Allee effect. Ricerche di Matematica866

65(2):535–548. https://doi.org/10.1007/s11587-016-0273-0867

Watts ME, Ball IR, Stewart RS, et al (2009) Marxan with zones: Software for optimal868

conservation based land-and sea-use zoning. Environmental Modelling & Software869

24(12):1513–1521. https://doi.org/10.1016/j.envsoft.2009.06.005870

White ER, Baskett ML, Hastings A (2021) Catastrophes, connectivity and allee effects871

in the design of marine reserve networks. Oikos 130(3):366–376. https://doi.org/10.872

1111/oik.07770873

28

https://doi.org/10.1111/1365-2664.14582
https://doi.org/10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
https://doi.org/10.1007/s11071-016-2671-y
https://doi.org/10.1073/pnas.202242699
https://doi.org/10.1073/pnas.202242699
https://doi.org/10.1073/pnas.202242699
https://doi.org/10.1007/b97434
https://doi.org/10.1111/ele.13460
https://doi.org/10.1111/ele.13460
https://doi.org/10.1111/ele.13460
https://doi.org/0.1016/0040-5809(80)90058-1
https://doi.org/0.1016/0040-5809(80)90058-1
https://doi.org/0.1016/0040-5809(80)90058-1
https://doi.org/10.1007/s11538-020-00750-x
https://doi.org/10.1101/2022.04.28.489935
https://doi.org/10.1101/2022.04.28.489935
https://doi.org/10.1101/2022.04.28.489935
https://doi.org/10.1007/s11587-016-0273-0
https://doi.org/10.1016/j.envsoft.2009.06.005
https://doi.org/10.1111/oik.07770
https://doi.org/10.1111/oik.07770
https://doi.org/10.1111/oik.07770


Zhang B, Kula A, Mack KM, et al (2017) Carrying capacity in a heterogeneous874

environment with habitat connectivity. Ecology letters 20(9):1118–1128875

29


	Introduction
	Setting the stage
	Model description
	Isolated patches with Allee effect
	Connected patches without Allee effect
	Connected patches with Allee effect

	Results
	Rescue effects and Allee pits
	Impact of the Allee effect on the response scenarios
	The width and depth of Allee pits

	Discussion and Conclusions
	Numerical methods
	Methods for Figure 4
	Methods for Figure 6

	The inverse rescue effect

